Schweißen

Unter Schweißen versteht man (gemäß EN 14610 und DIN 1910-100) „das unlösbare Verbinden von Bauteilen unter Anwendung von Wärme oder Druck, mit oder ohne Schweißzusatzwerkstoffen“. Von allen Verfahren ist das Schmelzschweißen das bekannteste, wobei die zu verbindenden Werkstoffe bis zu deren Verflüssigung erhitzt werden und sich vermischen, so dass sie nach dem Erstarren fest miteinander verbunden sind.

Welding

Zweck des Schweißens:


Bei der Begriffsbestimmung wird nach dem Zweck des Schweißens zwischen der Verbindungs- und Auftragschweißung unterschieden. Verbindungsschweißen ist das Zusammenfügen (DIN 8580) von Werkstücken, beispielsweise mit einer Rohrlängsnaht. Auftragschweißen ist das Beschichten (DIN 8580) eines Werkstückes durch Schweißen. Sind der Grund- und der Auftragwerkstoff unterschiedlich, wird unterschieden zwischen Auftragschweißen von Panzerungen, Plattierungen und Pufferschichten. Schmelzschweißen ist Schweißen bei örtlich begrenztem Schmelzfluss, ohne Anwendung von Kraft mit oder ohne gleichartigem Schweißzusatz (ISO 857-1). Im Gegensatz zum Löten wird dabei die Liquidustemperatur der Grundwerkstoffe überschritten. Prinzipiell können alle Materialien, die in die schmelzflüssige Phase überführbar sind, durch Schweißen verbunden werden. Häufigste Anwendung findet das Schweißen bei der stoffschlüssigen Verbindung von Metallen, Thermoplasten oder auch beim Glas sowohl bei Gebrauchsprodukten, als auch zur Verbindung von Glasfasern in der Nachrichtentechnik. Die Verbindung erfolgt je nach Schweißverfahren mit einer Schweißnaht oder einem Schweißpunkt, beim Reibschweißen auch flächig. Die zum Schweißen notwendige Energie wird von außen zugeführt. Der Begriff Bahnschweißen wird bei Verwendung von Robotern für das automatisierte Schweißen verwendet.

Schutzgasschweißen (SG)

Metallschutzgasschweißen (MSG)

Das teilmechanische Metallschutzgasschweißen (MSG), wahlweise als MIG (Metallschweißen mit inerten Gasen, EN ISO 4063: Prozess 131) oder MAG-Schweißen (Metallschweißen mit aktiven, also reaktionsfähigen Gasen, EN ISO 4063: Prozess 135), ist ein Lichtbogenschweißverfahren, bei dem der abschmelzende Schweißdraht von einem Motor mit veränderbarer Geschwindigkeit kontinuierlich nachgeführt wird. Die gebräuchlichen Schweißdrahtdurchmesser liegen zwischen 0,8 und 1,2 mm (seltener 1,6 mm). Gleichzeitig mit dem Drahtvorschub wird der Schweißstelle über eine Düse das Schutz- oder Mischgas mit ca. 10 l/min (Faustformel: Schutzgas-Volumenstrom 10 l/min pro mm Schweißdrahtdurchmesser) zugeführt. Dieses Gas schützt das flüssige Metall unter dem Lichtbogen vor Oxidation, welche die Schweißnaht schwächen würde. Beim Metallaktivgasschweißen (MAG) wird entweder mit reinem CO2 oder einem Mischgas aus Argon und geringen Anteilen CO2 und O2 (z.B. „Corgon”) gearbeitet. Je nach ihrer Zusammensetzung kann der Schweißprozess (Einbrand, Tropfengröße, Spritzerverluste) aktiv beeinflusst werden; beim Metallinertgasschweißen (MIG) wird als Edelgas Argon, seltener auch das teure Edelgas Helium, verwendet. Das MAG-Verfahren wird in erster Linie bei Stählen eingesetzt, das MIG-Verfahren bevorzugt bei NE-Metallen. Wahlweise können beim Metallschutzgasschweißen auch Fülldrähte, auch Röhrchendrähte genannt, eingesetzt werden (mit Aktivgasschweißen EN ISO 4063: Prozess 136, mit Inertgas EN ISO 4063: Prozess 137). Diese können im Inneren mit einem Schlackebildner und ggf. Legierungszusätzen versehen sein. Sie dienen dem gleichen Zweck wie die Umhüllungen der Stabelektrode. Einerseits tragen die Inhaltsstoffe zum Schweißvolumen bei, andererseits bilden sie eine Schlacke auf der Schweißraupe und schützen die Naht vor Oxidation. Letzteres ist vor allem bei dem Schweißen von Edelstählen wichtig, da die Oxidation, das „Anlaufen“ der Naht auch nach dem Weiterführen des Brenners und damit dem Weiterführen der Schutzgasglocke verhindert werden muss.  

Geschichte

Das MSG-Schweißen wurde erstmals 1948 in den USA in der Inertgas- bzw. Edelgas-Variante angewandt, damals wurde es auch als SIGMA-Schweißen (engl. shielded inert gas metal arc) bezeichnet. In der Sowjetunion wurde ab 1953 anstelle der teuren Edelgase wie Argon oder Helium ein aktives Gas zum Schweißen verwendet, nämlich Kohlendioxid (CO2). Dies war nur möglich, weil inzwischen auch Drahtelektroden entwickelt wurden, die den beim Aktivgasschweißen höheren Abbrand von Legierungselementen ausgleichen. In Österreich wurde bis 2005 das CMT (Cold Metal Transfer)-Schweißen serientauglich entwickelt, bei dem der Schweißstrom gepulst wird und Zusatzdraht mit hoher Frequenz vor und zurückbewegt wird, um eine gezielte Tropfenablösung bei geringer Wärmeeinbringung zu erreichen.

Wolfram-Inertgasschweißen (WIG)


Das 
Wolfram-Inertgasschweißen (WIG-Schweißverfahren, engl. TIG, EN ISO 4063: Prozess 141) stammt aus den USA und wurde dort 1936 unter dem Namen Argonarc-Schweißen bekannt. Erst Anfang der 1950er Jahre begann es sich auch in Europa durchzusetzen. In englischsprachigen Ländern heißt das Verfahren TIG oder auch GTAW. Dabei steht das TIG für Tungsten Inert-Gaswelding und GTAW für Gas Tungsten Arc Welding. In beiden Abkürzungen findet sich das Wort „Tungsten“ wieder, dies ist der englische Begriff für Wolfram.


WIG-Schweißen
 

Das Verfahren zeichnet sich gegenüber anderen Schmelzschweißverfahren durch eine Reihe von Vorteilen aus. In Verbindung mit dem WIG-Pulsschweißen und WIG-Wechselstromschweißen lässt sich jeder schmelzschweißgeeignete Werkstoff fügen. Beim WIG-Schweißen entstehen praktisch keine Schweißspritzer; die gesundheitliche Belastung durch Schweißrauche ist verhältnismäßig gering. Ein besonderer Vorteil des WIG-Schweißens ist, dass nicht mit einer abschmelzenden Elektrode gearbeitet wird. Die Zugabe von Schweißzusatz und die Stromstärke sind deshalb entkoppelt. Der Schweißer kann seinen Schweißstrom optimal auf die Schweißaufgabe abstimmen und muss nur so viel Schweißzusatz zugeben, wie gerade erforderlich ist. Dies macht das Verfahren besonders geeignet zum Schweißen von Wurzellagen und zum Schweißen in Zwangslagen. Durch den verhältnismäßig geringen und kleinräumigen Wärmeeintrag ist der Schweißverzug der Werkstücke geringer als bei anderen Verfahren. Wegen der hohen Schweißnahtgüten wird das WIG-Verfahren bevorzugt dort eingesetzt, wo die Schweißgeschwindigkeiten gegenüber den Qualitätsanforderungen zurücktreten. Dies sind beispielsweise Anwendungen im Rohrleitungs- und Apparatebau im Kraftwerksbau oder der chemischen Industrie.


Rohrwurzellage im WIG- Schweißverfahren

Die WIG-Schweißanlage besteht aus einer Stromquelle, die in den meisten Fällen auf Gleich- oder Wechselstromschweißen geschaltet werden kann, und einem Schweißbrenner, der mit der Stromquelle durch ein Schlauchpaket verbunden ist. Im Schlauchpaket befinden sich die Schweißstromleitung, die Schutzgaszuführung, die Steuerleitung und bei größeren Brennern der Zu- und Rücklauf des Kühlwassers.

Es gibt zwei Arten, den Lichtbogen zu zünden, die Kontakt- und die Hochfrequenzzündung.

Meist wird zum Schweißen das Edelgas Argon, seltener Helium oder ein Gemisch aus beiden Gasen eingesetzt. Dabei wird das verhältnismäßig teure Helium aufgrund seiner besseren Wärmeleitfähigkeit verwendet um die Wärmeeinbringung zu erhöhen. Bei austenitischen nichtrostenden Stählen können geringe Mengen an Wasserstoff im Schutzgas die Viskosität der Schmelze herabsetzen und die Schweißgeschwindigkeit steigern (es handelt sich dabei nicht mehr um ein inertes, sondern um reduzierendes Gas, siehe geplante Änderung der EN ISO 4063).

Das Schutzgas wird durch die Gasdüse zur Schweißstelle geleitet. Als Faustregel gilt: Gasdüseninnendurchmesser = 1,5 × Schmelzbadbreite. Die Schutzgasmenge ist unter anderem von Nahtform, Werkstoff, Schweißposition, Schutzgas und Düsendurchmesser abhängig; Informationen dazu lassen sich den Datenblättern der Hersteller entnehmen.

Beim WIG-Schweißen kann sowohl mit als auch ohne Zusatzwerkstoff gearbeitet werden. Zum manuellen Schweißen werden wie beim Gasschmelzschweißen meist stabförmige Zusätze verwendet. Verwechselungen mit den Gasschweißstäben müssen allerdings unbedingt vermieden werden, da die chemischen Zusammensetzungen voneinander abweichen.


Welding

WIG-Schweißen mit Zusatzdraht
 

Bei der WIG-Schweißung unterscheidet man Gleich- und Wechselstromschweißen. Das Gleichstromschweißen mit negativ gepolter Elektrode wird zum Schweißen von Stählen aller Art, NE-Metallen und deren Legierungen eingesetzt. Demgegenüber wird das Wechselstromschweißen vorwiegend zum Schweißen der Leichtmetalle Aluminium und Magnesium eingesetzt. In Sonderfällen werden Leichtmetalle auch mit Gleichstrom und mit einer positiven Elektrode geschweißt. Dabei werden Spezialschweißbrenner mit einer sehr dicken Wolframelektrode und Helium als Schutzgas verwendet. Nötig ist die Pluspolung der Wolframelektrode bei Leichtmetallen, da diese zumeist eine harte Oxidschicht mit sehr hohem Schmelzpunkt (wie bei Aluminiumoxid, Magnesiumoxid) auf ihrer Oberfläche bilden. Diese Oxidschicht wird bei einer Minuspolung des Werkstücks aufgebrochen, da das Werkstück nun als Elektronen emittierender Pol fungiert und negative Sauerstoffionen abgeführt werden.  

Die BGI 746 (Umgang mit thoriumoxidhaltigen Wolframelektroden beim Wolfram-Inertgasschweißen (WIG)) enthält Hinweise zum sicheren Umgang mit thoriumoxidhaltigen Wolframelektroden für das Wolfram-Inertgasschweißen und beschreibt die notwendigen Schutzmaßnahmen, die ergriffen werden müssen, um mögliche Gefährdungen durch Umgang mit diesen Elektroden auszuschließen oder auf ein vertretbares Maß zu minimieren. Nötig ist dies wegen einer geringen Radioaktivität des Thoriums und der gesundheitschädigenden Stäube des Schwermetalls. Aufgrund der Verfügbarkeit von mit Lanthan oder seltenen Erden legierten Wolframelektroden kann heute auf den Einsatz von thoriumlegierten Wolframelektroden verzichtet werden.

WIG-Impulsschweißen

Eine Weiterentwicklung des WIG-Schweißens ist das Schweißen mit pulsierendem Strom. Beim WIG-Impulsschweißen pulsiert der Schweißstrom zwischen einem Grund- und Impulsstrom mit variablen Frequenzen, Grund- und Impulsstromhöhen und -breiten. Die Pulsfrequenz, die Impulsbreite und die Impulshöhe sind getrennt voneinander einstellbar. Das WIG-Pulsen mit variablem Stromverlauf kann nur mit einer besonderen Schweißanlage (Schweißinverter) durchgeführt werden. Die fein dosierbare Wärmeeinbringung beim WIG-Impulsschweißen ermöglicht eine gute Spaltüberbrückung, eine gute Wurzelschweißung und ein gutes Schweißen in Zwangslagen. Schweißnahtfehler am Nahtanfang und Nahtende, wie beim Rohrschweißen, werden vermieden.

Bei allen Beschreibungen handelt es sich um manuelles oder teilmechanisiertes WIG-Schweißen mit Zusatzwerkstoff vorwiegend ø 1,6 mm. Beim Impulsschweißen von Leichtmetallen (namentlich: AA6061) kann ein Anschmelzen an der Oberfläche erzielt werden und somit bei dünnen Blechen <1.0 mm Durchschmelzungen verhindert werden. Vor allem bei Kehlnähten wird die Ecke eher erfasst als beim Standardschweißen mit konstantem Strom. Es wurden auch Bleche mit einer Dicke von 0,6 mm einwandfrei stumpfgeschweißt, da die Stabilität des Lichtbogens sowie die konzentrierte Wärmeeinbringung ein kleines definiertes Schmelzbad erlauben. Das Heften stellt das Hauptproblem dar, wenn ein Spalt vorhanden ist und so wurzelseitig Sauerstoff Zutritt hat. Der Einfluss der Wolframelektrodenlegierung und die Zusammensetzung des Schutzgases ist wichtig; diese Parameter beeinflussen den Prozess wesentlich.

Plasmaschweißen
 

Beim Plasmaschweißen (Plasma-Metall-Inertgasschweißen, EN ISO 4063: Prozess 151) dient ein Plasmastrahl als Wärmequelle. Plasma ist ein durch einen Lichtbogen hocherhitzes, elektrisch leitendes Gas. Im Plasmabrenner wird durch Hochfrequenzimpulse das durchströmende Plasmagas (Argon) ionisiert und ein Hilfslichtbogen (Pilotlichtbogen) gezündet. Dieser brennt zwischen der negativ gepolten Wolframelektrode und der als Düse ausgebildeten Anode und ionisiert die Gassäule zwischen Düse und plusgepoltem Werkstück. Ein berührungsloses Zünden des Lichtbogens ist dadurch möglich. Als Plasmagas sind Gasgemische aus Argon und Wasserstoff bzw. Argon und Helium gebräuchlich, die die Schmelze vor Oxidation schützen und den Lichtbogen stabilisieren. Die geringfügigen Beimischungen von Helium oder Wasserstoff verstärken den Einbrand und erhöhen dadurch die Schweißgeschwindigkeit. Die Einengung des Plasmas durch die wassergekühlte Kupferdüse zu einer fast zylindrischen Gassäule ergibt eine höhere Energiekonzentration als beim WIG-Schweißen, wodurch höhere Schweißgeschwindigkeiten möglich sind. Der Verzug und die Spannungen sind daher geringer als beim WIG-Schweißen. Durch den noch bei geringsten Stromstärken (weniger als 1 A) stabil brennenden Plasmalichtbogen und die Unempfindlichkeit bei Abstandänderungen der Düse zum Werkstück wird das Verfahren auch in der Mikroschweißtechnik eingesetzt. Mit dem Mikroplasmaschweißverfahren (Schweißstrombereich 0,5-15 A) können Bleche mit 0,1 mm noch geschweißt werden. Das Plasma-Stichloch- oder -Schlüsselloch-Schweißen wird ab einer Blechdicke von 3 mm eingesetzt und kann in Abhängigkeit vom zu verschweißenden Werkstoff bis zu einer Dicke von 10 mm für das einlagige Schweißen ohne Nahtvorbereitung angewendet werden. Hauptanwendungsgebiete sind der Behälter- und Apparatebau, der Rohrleitungsbau und die Raumfahrt.

Widerstandspunktschweißen

 

Punktschweißen (Widerstandspunktschweißen RP, EN ISO 4063: Prozess 21) ist ein Widerstandsschweißverfahren zum Verschweißen von Blechen. Die Bleche werden dabei durch zwei gegenüberliegende Elektroden an einem Punkt zusammengepresst. Durch die Elektroden wird ein Schweißstrom in das Blech eingeleitet. Das Aufschmelzen des Grundwerkstoffes erfolgt an der Stelle des größten elektrischen Widerstandes, in der Regel am Übergang zwischen den Blechen. Dieser Übergangswiderstand ist etwa 30mal höher als der Widerstand des Materials selbst. Die Elektroden sitzen meistens am Ende einer Punktschweißzange oder an Zylindern. Um ein Überhitzen der Elektroden zu vermeiden, wird häufig auf der Innenseite Kühlwasser hindurchgeleitet. Die Elektroden bestehen in fast allen Fällen aus Kupfer und Legierungen, wie zum Beispiel Glidcop. Dies geschieht zum Einen wegen der sehr guten Leitfähigkeit für Strom und Wärme, zum Anderen aber auch wegen des Übergangswiderstands der Elektroden zum Werkstückmaterial, der nur etwa fünfmal höher ist als der Widerstand im Werkstück selbst.

Ein beim Widerstandspunktschweißen häufig vorkommender Fehler ist der Nebenschluß. Ursachen für den Nebenschluß können recht zahlreich sein, so kann ein Teil des Schweißstroms über einen bereits geschweißten Punkt, die Vorrichtung oder ungünstige Konstruktion des Bauteils „verloren gehen“, d.h. es steht weniger Wärmemenge zur Bildung der Schweißlinse zur Verfügung - der Punktdurchmesser wird kleiner. Punktschweißen ist ein wichtiges Verfahren zur Verbindung der Karosserieteile im Automobilbau und bei der Fertigung elektrotechnischer Artikel, wie zum Beispiel Elektronenröhren. In letzter Zeit wird alternativ zum Punktschweißen auch das Durchsetzfügen -ein formschlüssiges Umform-Fügeverfahren- angewandt.

Eine Sonderform des Punktschweißens ist das Bolzenschweißen, welches auch Merkmale des Lichtbogenschweißens aufweist. Hierbei werden Bolzen auf Blech oder auch massive Körper geschweißt. Das Verfahren ist ohne rückseitige Kontaktierung ausführbar und hat hohe Bedeutung beispielsweise bei der Aufschweißung von Ankerbolzen für die kraftschlüssige Verbindung von Beton und Stahl. Eine typische Anwendung ist hier der Straßenbrückenbau.

Rollennahtschweißen
 

Beim Rollennahtschweißen (EN ISO 4063: Prozess 22) sind die Elektroden im Vergleich zum Punktschweißgerät scheibenförmig ausgeführt und rollen auf den, zwischen den Scheiben hindurchgeförderten Fügepartnern, ab. Somit lassen sich, anders als beim Punktschweißen, quasi-kontinuierliche Nähte erzeugen, die aus der Überlagerung einzelner Schweißpunkte bestehen. Ein Rollennahtschweißgerät funktioniert nach dem gleichen Schweißprinzip wie das Punktschweißen. Ein Anwendungsbeispiel des Verfahrens ist die Herstellung des zylindrischen Teiles von Weißblech-Konservendosen

Buckelschweißen


Buckelschweißen (EN ISO 4063: Prozess 23) entspricht im Prinzip dem Punktschweißen, wobei aber in einem der zu verbindenden Bauteile eine oder mehrere Erhöhungen (Schweißbuckel) eingebracht werden. Nur diese Buckel liegen nun auf dem anderen zu verschweißenden Bauteil auf. Durch die Geometrie des Buckels ist der Bereich des Stromüberganges genau definiert, als Elektroden werden (im Unterschied zum Punktschweißen) flächenhafte Kupferelektroden verwendet. Während des Stromflusses schmilzt der Buckel teilweise auf, drückt das Material des Buckels teilweise in das andere Bauteil und geht mit diesem eine Verbindung ein. Eine weitere Variante des Buckelschweißens ist das Ausnutzen natürlicher Buckel, beispielsweise beim Schweißen von Gittern (sogenanntes Kreuzdrahtschweißen). Dabei fließt Strom über die Kontaktstellen der einander kreuzenden Metallstäbe, wodurch es an diesen Stellen zur Erwärmung und Verschweißung kommt. Die Vorteile des Buckelschweißens liegen in dem geringen Elektrodenverschleiß und in der gleichzeitigen Verschweißbarkeit mehrerer Buckel. Wegen der Aufteilung des Schweißstromes auf mehrere Buckel muss die Schweißstromquelle einen entsprechend der Buckelzahl höheren Strom liefern können.

Quelle: 
Wikimedia Foundation Inc.
Wikipedia / Titel: 
Schweißen / URL: http://de.wikipedia.org/wiki/Schwei%C3%9Fen

(Stand 7. Juli 2013) 

Die Inhalte bzw. technischen Angaben sind ohne Gewähr. (Quelle siehe Quellverzeichnis)

 

 


 

 

 


 


« zurück